Modelling Em Wave Interactions with Human Body in Frequency Dependent Crank Nicolson Method
نویسندگان
چکیده
A simulation model of the human body is developed in frequency dependent Crank Nicolson finite difference time domain (FD-CN-FDTD) method. Numerical simulation of electromagnetic wave propagation inside the human head is presented. Advantages of using time discretization beyond the Courant Friedrich-Lewy (CFL) limit in FD-CN-FDTD method are shown. Parallelization using Open Multi-Processing (OpenMP) in a shared memory architecture is performed and the achieved computational efficiencies are shown.
منابع مشابه
A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملComparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation
Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...
متن کاملFDTD Modelling of Lorentzian DNG metamaterials using Approximate-Decoupling Method Based on the Unconditionally-Stable Crank–Nicolson Scheme
An implicit finite-difference time-domain (FDTD) method using the approximate decoupling method based on the unconditionally-stable Crank-Nicolson scheme has been used to study a special class of artificially engineered materials having negative permittivity and permeability, called metamaterials. The 2-d propagation of the EM waves has been analyzed. The Convolution Perfectly Matched Layer (CP...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملAn ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
A new method is formulated and analyzed for the approximate solution of a twodimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit (ADI) method based on the Crank-Nicolson method combined with the L1-approximation of the time Caputo derivative of...
متن کامل